UHPC concrete for new precast bridge construction or bridge repair

For more than 25 years, UHPC Ultra High Performance concrete has been used for the construction and repair of concrete bridges worldwide. The mechanical and durability
properties are absolutely ideal for modern bridge construction.

WPE DK UHPC concrete is used in the production of precast concrete parts and for on-site assembly. With UHPC concrete, very slim and high load-bearing elements can be manufactured quickly, cost effectively and very precisely. All of our UHPC material qualities can be processed with most types of concrete mixer.

Our UHPC bridge material qualities are usually mixed with a water / cement ratio of less than 0.25 and a proportion of steel fibers. Compressive strengths of 150 MPa / 21800 psi to over 230 MPa / 33400 psi are achieved in our standard quality.

Our UHPC material properties meet all required technical data, including in the USA from the responsible DOTs. All of our UHPC material qualities are subject to a permanent quality check of the raw materials used, finished products and processing on site on the construction site.

We use our UHPC castable materials for joint fill solutions or connection of precast bridge elements. With UHPC castable you can minimizse the connection joints.

We manufacture UHPC mortar, UHPC Castable, UHPC Shotcrete and UHPC Rapid material qualities for bridge construction. At the customer's request, we also develop and manufacture special qualities.

UHPC mortar, UHPC Shotcrete and UHPC Rapid are mainly used for repairs. No extensive preparatory work is necessary for repairs with our UHPC materials. After less than 48 hours, our standard materials reach more than 70% of their maximum strength. UHPC is waterproof from a layer thickness of 5 mm.

We use our UHPC TopLayer or UHPC Phalt material qualities for bridge decks. In Europe we use UHPC TopLayer for new wood bridge construction. All UHPC can be mixed on site and processed quickly and inexpensively with standard processing machines.

The mixing is very simple. You mix 1 part UHPC Binder with 1 part aggregates and clear water, that is all. Everybody can mix it. No additional addives are necessary.

 

 

WPE DK International

Phone: 0049 1514 6318334
E-mail: info@wpe-dk.dk
Homepage: www.wpe-dk.com



In the future more people will live one artificial islands made by UHPC concrete constructions

In the future, more and more people will be forced to live on the water in coastal and flat islands.

Most of the world's major sites can be found on the coasts of our continents. the space for enlarging the site is not infinite. The first city planners are working on designs for how cities can spread out on the water. In other parts of the world, coastal sites are so deep in relation to the ocean that if the water rises just a few centimetres, the sites are in danger. Some islands are so deep that they also have extreme problems with today's ocean levels.

The previous wooden constructions of the coastal and river delta inhabitants will no longer be sufficient.
Rising sea levels and flooding are the result of climate change.

New construction designs by architects and new construction material can help coastal residents. Likewise, the existing wooden constructions can be made more stable where possible.

WPE DK HPC and UHPC binder systems are able to use local raw materials as aggregates or reinforcement such as bamboo, coconut fibre, jute fibre, shell casing, desert sand, lawa, granite etc. Everything built from HPC and UHPC concrete with such aggregates is sustainable and can be easily reused.

WPE DK HPC and UHPC concrete is ideal as a construction material for repairs and new constructions. HPC and UHPC concrete can extremely increase the stability and service life of wooden structures both above and underwater and create a corrosion protection for steel construction. 


Artificial islands on stilts on the coast or floating
islands on the high seas can offer solutions of any size. The islands can consist entirely of UHPC concrete. UHPC concrete is absolutely seawater resistant and has enormous strength. Entire cities could emerge on such platforms. The first architectural drafts by large international architectural offices have been around for a long time. Disused oil production platforms could also be upgraded and serve as starting points for such large artificial platforms.

For more than 30 years, HPC and UHPC concrete has been used in the international offshore industry as a material for new constructions or repairs. A lifetime of several hundred years is assumed for WPE DK UHPC new
designs.


Artificial, near-natural reefs and bank protections with HPC and UHPC are also planned, whereby the bank protections adapt to nature in their design and are not ugly concrete blocks. HPC and UHPC materials are far superior to steel in many areas in the offshore industry. There are already the first plans for underwater structures made of WPE DK UHPC special qualities in the deep sea down to 3000 m /9800 ft. 

 

 

WPE DK International

Phone: 0049 176 601 73146
E-mail: info@wpe-dk.dk
Homepage: www.wpe-dk.com


 

Production of UHPC combat binder and concrete under war conditions

For more than two years, the demand for HPC and UHPC binders for military applications has been
increasing extremely for us. As reported earlier, we have produced and delivered several hundred tonnes of special HPC and UHPC for testing purposes. For these test purposes, special mixes were developed and produced according to customer requirements. The material pre-tests were carried out here in Germany. The military load tests are carried out in the respective customer country.

It is one thing to produce special UHPC combat concrete in peacetime under controlled conditions, it is another to produce such concrete under wartime conditions.
For this reason, we have also started a production and mixer system development in parallel to the binder development.
The technical requirements for such a system are very long and very complex.


Here is just a small excerpt from a list of requirements.

Requirement plant (40 feet container system)
- The system must be easily transportable
- The system must be robust

- The system must have an independent energy system.
- The system must be easy to operate
- The unit must be able to operate under extreme cold, heat and humidity conditions.
- The system should be divided into combinable modules.
- The plant should be able to produce binders and concrete
- The plant should have all the necessary processing machines
 

Requirement UHPC combat binder and combat binder concentrate
- The UHPC combat binder should be able to meet certain minimum technical values
- The UHPC combat binder should be produced as completely as possible with local raw materials.

- The concrete should be produced with local aggregates
- It should be possible to produce combat binder versions as mortar, castable, pumpable and sprayable.
- No additional additives should be necessary
- Extremely little mixing water should be used.
- The concrete should also be processable under extreme environmental conditions.
- The concrete should be workable under water
- It should be possible to use a wide variety of aggregates from destroyed buildings, sands, soils, plastics, metals, etc. The reprocessing should be as low as possible


The HPC and UHPC combat binder production and concrete mixing plant will soon be available to us as a basic prototype plant for testing purposes. Individual parts have already been in use for several decades. Several more special expansion stages will be available to our customers.






New develoments for this year coming from our UHPC laboratory

The WPE DK development lab has announced new developments for this year.


At present, new UHPC binders are being tested that reduce the mixing time by 60%. The first strength
tests have shown no significant difference to our previous UHPC binder systems. Also the first processing tests show no loss of processing quality.


To the surprise of many of our customers, we will most likely be able to offer the cost of the latest Cast and Mortar binder systems at a 15% - 20% reduced price. The binder versions are also in the testing phase. The values so far are almost identical to the values of our previous UHPC binder systems.

www.wpe-dk.com

Sand for civil construction is running out in many places of the world - Solution UHPC Desert Sand Binder + Nature Desert sand

Sand consumption today

In more and more parts of the world, the availability of sand is becoming increasingly difficult or even impossible for the construction industry.
Gigantic sales are now being made with sand.
Millions of tons of sand are transported to the oceans each year, and demand will continue to rise.

Example
  • Over 47 billion tons of sand are mined annually
  • For a standard house you need approx. 200 to of sand
  • For 1 kilometre highway you need approx. 30000 to of sand
  • Global sand business is 70 billion US Dollar/year



Types of sand extraction

  • Sand mines
  • Sand from rivers
  • Beach Sand
  • Sand mining in coastal area

 

 

WPE DK is manufacturer of UHPC Desert Sand Binder for more than 10 years. This binder system is mixed only with desert sand and a little water. Now there is the 3rd development stage of UHPC Desert Sand binder. This new generation differs significantly from the 1st generation in strength, workability, sustainability and much lower CO2 footprint. The latest generation can also be produced on site with local raw materials without any problems. 

For us as WPE DK, the sustainable future has begun with desert sand.

WPE DK International

Phone: 0049 176 601 73146
E-mail: info@wpe-dk.dk
Homepage: www.wpe-dk.com



UHPC Concrete tower construction up to 300 meter

Industrial chimneys and lighthouses have always
been bricked up, and so well that they are still
fully functional to this day and would be a while
if they weren't torn down. Today you would not
be able to pay for such a construction method
and you would no longer have the time to assemble
it.

Large or tall towers such as TV towers, radio masts,
offshore / onshore wind turbines and similar
structures are made of steel or reinforcing concrete.
High-quality UHPC materials can take on
compressive strengths of more than 240 MPa /
34.800 psi and thus corresponding bending tensile
strengths without reinforcement.

With appropriate reinforcement, these values ​​can
be multiplied several times. Today, slim, high-
strength tower constructions are possible that
cannot be achieved with standard concrete. The
main tube construction of radio masts can also
be made entirely of UHPC today.
Towers for onshore and offshore wind turbines
are already made from UHPC prefabricated parts
or cast on site.

UHPC has many technical advantages over steel
or reinforced concrete structures. UHPC towers
are absolutely corrosion-resistant, quickly
installed and maintenance-free.
 
 

UHPC Phalt a semi-flexible pavement system

UHPC Phalt is a grouted macadam comprising an open graded asphalt that is flooded with high strength microsilica based mortars. The open graded asphalt is mixed to a design mix at a local asphalt plant and delivered to site in tipper trucks. It is placed via traditional paving techniques.
The UHPC Phalt mortars are delivered in 1 tonne bags and mixed via a continuous flow shaftmixer and pump machine. The mortar is mixed for a certain amount of time to achieve correct viscosity then
flooded via a large hose onto the asphalt matrix.

UHPC Phalt can be laid at depths of 30 mm / 1,18 in upwards (typically maximum depth used is 40 mm /1,57 in). UHPC Phalt is the top layer of the pavement that is supported by a basecourse layer. The basecourse layer can vary dependent on environment and loadings, internal or external applications. Preferred basecourse materials to support the UHPC Phalt topping are high modulus macadam basecourse. CBM bases are ideal for use for large internal areas.

Asphalt disadvantages insufficient stability and deformation resistance


- Static point loads
- Trailer supports
- Forklift traffic
- Tracked vehicles
- High-bay warehouse / heavy-duty warehouse
- Ruts, wave formation (bus stops, intersections,    
Open graded Asphalt
  roundabouts)
- Low wear resistance when using forklift forks,
  loading shovels, roll containers

Advantages of UHPC Phalt

- Very high load carrying capacity
- Frost and dew resistant
- Jointless laying
- Quick installation
- High early strength
- Temperature resistant from - 60°C/-76°F 
UHPC Phalt
   to  +90°C/194°F 
- High wear resistance
- Resistance to aggressive media
- Long service life 
- Good to very good recyclability
- Much faster to lay than standard floor concrete
- Very short curing time
- Substantially cheaper than standard floor concrete

Where is UHPC Phalt used?

- Airports
- Ports
- Lorry marshalling areas
- Service yards
- Acces roads
- Bus stations / depots
- Waste management facilities
- Roads
- Car parks
- Distribution center
- Indoors for warehouse floors
- Anywhere that concrete is conventionally used


WPE DK International

Phone: 0049 176 601 73146
E-mail: ber@wpe-dk.dk
Homepage: www.wpe-dk.com

 


 

30 years of fundamental difference between UHPC and concrete

This photo is more than 30 years old. It is from the first flyer I used to sell UHPC. The photo was meant to explain to our customers what the general difference between concrete and UHPC is, because almost all of our customers at that time had no idea what the difference between concrete and UHPC is. At the time, I found this photo comparison brilliantly simple and clear.

Today, after 30 years, our team still has the feeling that many write and talk about UHPC but really do not recognise the basic difference. On the contrary, people today try to dilute and obfuscate the difference between concrete and UHPC. For these professionals, everything and nothing is concrete and UHPC. There are very few professionals who can explain the difference in simple and logical language. However, the architect, the structural engineer or the construction company must know the difference in order to be able to use both materials optimally.
For this reason we have decided to bring out this very old photo and to try again to explain the difference between concrete and UHPC and hope that some interested people out there will follow us, to whom we would like to thank already now.



The idea behind this photo was to produce two test cylinders and subject them to a pressure test. The main point was not to find out which material has the higher compressive strength, that was clear from the beginning.
No, we wanted to show and compare the fracture surface. This fracture surface shows the difference so simply and clearly.
At the beginning we mixed a standard cement binder and a UHPC binder and added the same grading curve and material quality to aggregates, filled them into test cylinders and waited 28 days. After 28 days, the concrete and UHPC cylinders were demoulded and pressed in a press until they broke. The result of this fracture can be seen in this photo.


The left cylinder is the standard concrete cylinder and the right cylinder is the UHPC cylinder.
Looking at the left cylinder, the fracture surface is clearly in the binder, the gravel aggregate is not broken. The weak point in this case is the cement binder.
If we look at the right cylinder, the fracture has gone through the gravel aggregate and the UHPC binder simultaneously and evenly. There is no weak point here. The UHPC binder is just as hard and resistant as the aggregate and the adhesion between aggregate and binder is extremely high.


This photo comparison and the resulting result shows that there are two fundamentally different binder systems, the concrete binder and the UHPC binder, whereas the UHPC binder is superior to the concrete binder by several times. This is how it was then, how it is now and how it will be in the future.


WPE DK International

Phone: 0049 176 601 73146
E-mail: ber@wpe-dk.dk
Homepage: www.wpe-dk.com

UHPC combat concrete for bunkers and security rooms

Over 20 years ago, we were very involved in the security industry and military. We tried a lot of things
successfully and carried out some interesting projects. Then it was very quiet for many years and we successfully focused on other projects and markets.
For the last two years we have been asked again from non-civilian areas. Now we are developing our UHPC combat concrete further in all areas, especially for safety or bunker construction, both above ground, under water and underground. In the development of UHPC materials, we have to take modern weapon systems into account. Several hundred tonnes of special UHPC combat binders are now being shipped by us for testing and the worst conditions.

There is also interest in UHPC material for civil shelters of different load types. Here we will have to meet new regulations and material tests.


WPE DK International

Phone: 0049 176 601 73146
E-mail: info@wpe-dk.dk
Homepage: www.wpe-dk.com

UHPC concrete history in floating constructions and outlook for the future

More than twenty years ago, a very special UHPC binder was developed that had a density far below 1 in order to be able to build ship hulls with a weight of several hundred tonnes. In Asia, several large hulls have been successfully built with this UHPC material. The hulls of this special material had many advantages over a traditional steel construction. They were much lighter which increased the loading weight, they were absolutely resistant to salt water which reduced the inspections to almost zero and thus saved immense costs. UHPC concrete was easy to form and, especially in large quantities, reduced production costs and times. But one of the biggest advantages of this particular UHPC was that it was unsinkable. Even in the event of catastrophic damage, the components would still float, providing an enormously high level of safety compared to a steel structure that would sink instantly.
After all these years, we were approached by architects for this special binder material for their floating cities. The question was also whether we could produce this special binder from back then again for today's floating constructions and possibly also improve it with newer elements.
This topic was so interesting for us that we pulled out the old documents from our drawers. It turned out that modern raw materials and elements could improve the recipe of that time. Today, we believe that we will be able to offer a new, modern binder recipe ready for production in a few months.
It would be possible to produce this special binder in most coastal countries.

WPE DK

UHPC concrete in combination with Amnethyst and other gemstone for a special design of our Manufacture Studio

For a larger project in our UHPC manufacturing studio, a certain amount of amethyst was needed. We
found the quality we required in Africa. In this case we will not use a classical cut amethyst but a special processed amnethyst.  


Only in the case of UHPC jewellery requested by our customers do we resort to a large extent to classically cut amethysts.

 

 

 


 

UHPC Technology and the Ocean

 

In more than 25 years we have carried out a number of projects in the offshore industry and have developed special UHPC systems for many of our current customers.
The future for us started a few years ago in UHPC development, in terms of UHPC material development for floating offshore power generation, floating city constructions and coastal protection. The UHPC materials are ready for use today. These materials are far superior to all other materials.

 

Monopile

Previously used material: UHPC
UHPC is used since the year 2000 in the new transition piece
(more than 200,000 tons have been installed so far).
Other possible uses:
Tower construction, corrosion protection in the underwater
area, Increase in stability, expansion of a foundation part for
sustainable species protection
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion
protection, ductile properties, absolutely sea water resistant
Processing:
On site at sea - Transition piece
On land - Tower elements as prefabricated parts - assembly
of the prefabricated parts partly on land, partly at sea

 

Tripot

Previously used material: UHPC
UHPC is used since the year 2000 in the new transition
piece (more than 200,000 tons have been installed so far).
Other possible uses:
Corrosion protection in underwater areas, increase in
stability, expansion of a foundation part for sustainable
species protection
UHPC properties:
High compressive and tensile strength, fast curing, very
good pumpability, curing under water, very good
corrosion protection, ductile properties, absolutely
seawater resistant
Processing:
On site at sea


Offshore

Previously used material: UHPC
UHPC is used since the year 2000 for repairs of structures
Other possible uses:
Platform construction, platform structures, corrosion
protection in the underwater area, increasing the static
load-bearing capacity
UHPC properties:
High compressive and tensile strength, fast curing, very
good pumpability, curing under water, very good
corrosion protection, temperature resistance up to
1200°C, ice-resistant, absolutely seawater-resistant,
waterproof after a layer thickness of a few millimeters
Processing:
On site at sea
On land: - Production of precast elements



Jetty

Previously used material is concrete, steel or UHPC
UHPC has been used since the year 2000 to repair the
supports and the deck
Other possible uses:
Complete jetty constructions, repair of existing jetties,
improvement of the load-bearing capacity of the jetties,
significant extension of the operating time compared to
wood, concrete and steel
UHPC properties:
High compressive and tensile strength, fast curing,
very good pumpability, curing under water, very good
corrosion protection, weight reduction compared to
concrete or steel, absolutely seawater resistant,
waterproof after a layer thickness of a few millimeters
Processing:
On site at sea and on land


Floating Offshore

Previously used material is steel and anti-corrosion paint
systems
Other possible uses: 
Platform construction, platform structures, corrosion
protection in the underwater area, increasing the static
load-bearing capacity
UHPC properties:
High compressive and tensile strength, fast curing,
very good pumpability, curing under water, very
good corrosion protection, temperature resistance
up to 1200°C, ice-resistant, absolutely
seawater-resistant, waterproof after a layer
thickness of a few millimeters
Processing:
On site at sea
On land - Production of precast elements


Floating Windmill

Material used so far is steel and concrete
Other possible uses:
Floating construction, tower construction, corrosion
protection in underwater areas, increasing the static
load-bearing capacity
UHPC properties:
High compressive and tensile strength, fast curing,
very good pumpability, curing under water, very
good corrosion protection, ice-resistant, absolutely
seawater-resistant, waterproof after a layer thickness
of a few millimeters
Processing:
On site at sea for repair or in dry dock



Barge

Previously used material is steel or UHPC
UHPC is used since 2002 as a new barge constructions
Other possible uses:
Ship hulls, houseboats, pontoons, working platforms
UHPC properties:
High compressive and tensile strength, fast curing, very
good pumpability, curing under water, very good
corrosion protection, very good wear protection,
absolutely seawater-resistant, good ductility,
processing as shotcrete or casting compound possible,
Waterproof after a layer thickness of a few millimeters
Processing:
On land


Floating dock

Previously used material is steel or UHPC
UHPC was used in the year 2018 for the construction
of a new floating dock.
Other possible uses:
Ship hulls, houseboats, pontoons, work platforms
UHPC properties:
High compressive and tensile strength, fast curing,
very good pumpability, curing under water, very
good corrosion protection, very good wear protection,
absolutely seawater-resistant, good ductility,
processing as shotcrete or casting compound possible,
Waterproof after a layer thickness of a few millimeters
Processing:
At shore in the dock


Flood protection erosion


Previously used material is concrete
UHPC could be used as an alternative to concrete in
dike and bank protection.
UHPC properties:
High compressive and tensile strength, fast curing,
very good pumpability, curing under water, very
good corrosion protection, very good wear protection,
absolutely seawater-resistant, processing as shotcrete
or casting compound possible
Processing:
On land as precast concrete parts or mats in all sizes,
structures and shapes.



Cliff protection

Previously used material is concrete or other materials
UHPC could be used as an alternative to concrete or other
materials.
UHPC properties:
High compressive and tensile strength, fast curing, very
good pumpability, curing under water, very good corrosion
protection, very good wear protection, absolutely
seawater-resistant, processing as shotcrete or casting
compound possible
Processing:
On land as precast concrete parts or as shotcrete directly
on site



Reef protection

Previously used material is concrete or other materials
UHPC could be used as an alternative to concrete or other
materials.
UHPC properties:
High compressive and tensile strength, fast curing, very
good pumpability, curing under water, very good corrosion
protection, very good wear protection, absolutely
seawater-resistant, processing as shotcrete or casting
compound possible
Processing:
On land as precast concrete parts or as casting compound
directly on site



Flood gate

Previously used material is steel
UHPC will be used in the year 2021 as an replacement for
steel structures
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing underwater, very good corrosion protection,
ice-resistant, absolutely seawater-resistant, waterproof after a
layer thickness of a few millimeters
Processing on land:
Production of precast elements



Underwater living areas

Previously used material is concrete
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion protection,
temperature resistance up to 1200°C, ice-resistant, absolutely
seawater-resistant, waterproof after a layer thickness of a few
millimeters
Processing on land:
Production of precast elements or complete construction



Pontoon, Caisson

Previously used material is concrete
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion protection,
temperature resistance up to 1200°C, ice-resistant, absolutely
seawater-resistant, waterproof after a layer thickness of a few
millimeters
Processing:
On site at sea
On land - Manufacture of complete constructions



Protection mesh sub sea pipeline

Previously used material is concrete
UHPC properties:
High compressive and tensile strength, fast curing, very
good pumpability, curing under water, very good corrosion
protection, absolutely seawater resistant
Processing:
On site at sea
On land - Production of precast elements



Protection mesh sub sea cable

Previously used material is concrete
UHPC properties:
High compressive and tensile strength, fast curing, very
good pumpability, curing under water, very good corrosion
protection, ice-resistant, absolutely seawater-resistant
Processing:
On site at sea
On land - Production of precast elements



Energy spherical pressure accumulator systems
 

Deep sea pressure storage systems for offshore wind turbines
Previously used material is concrete
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion protection,
temperature resistance up to 1200°C, ice-resistant, absolutely
seawater-resistant, waterproof after a layer thickness of a few
millimeters
Processing:
On site at sea
On land - Manufacture of prefabricated structures



Offshore LNG storage
 

Floating platforms as quays, gas or oil interim storage
facilities and processing centers
Material used so far is steel and concrete
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion
protection, temperature resistance up to 1200°C, ice-resistant,
absolutely seawater-resistant, waterproof after a layer
thickness of a few millimeters
Processing:
On site at sea
On land - Production of precast elements



Offshore rocket launch site systems

 

The launch systems such as small and medium-sized rockets for
the transport of satellite systems can be provided on ship
systems or floating platform systems.
UHPC properties:
High compressive and tensile strength, fast
curing, very good pumpability, curing under water, very good
corrosion protection, temperature resistance up to 1200°C,
ice-resistant, absolutely seawater-resistant, waterproof after a
layer thickness of a few millimeters
Processing:
On site at sea
On land - Production of precast elements



Floating city

 

Development of floating platforms for living and working with
independent energy generation. In coastal areas and estuaries.
The platforms can also be provided with port facilities and runways.
Platform construction, platform structures, corrosion protection
in the underwater area, increasing the static load-bearing capacity
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion
protection, temperature resistance up to 1200°C, ice-resistant,
absolutely seawater-resistant, waterproof after a layer thickness
of a few millimeters
Processing:
On site at sea
On land - Production of precast elements



Floating underwater tunnel tubes

 

Other possible uses:
Platform construction, platform structures, corrosion protection in
the underwater area, increasing the static load-bearing capacity
UHPC properties:
High compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion protection,
temperature resistance up to 1200°C, ice-resistant, absolutely
seawater-resistant, waterproof after a layer thickness of a few
millimeters
Processing:
On site at sea
On land: Production of precast elements



Deep sea constuction



UHPC was tested in the year 2018 under water pressure conditions
from 3000 meters deep for the compressive strength of a test
construction. The test turned out positive
Possible uses:
Constructions for the deep sea, residential constructions, working
constructions, military
UHPC properties:
Very high compressive and tensile strength, fast curing, very good
pumpability, curing under water, very good corrosion protection,
very good wear protection, absolutely seawater-resistant, good
ductility, processing as shotcrete or casting compound possible
Processing:
On land

 

WPE DK International

Phone: 0049 176 601 73146
E-mail: info@wpe-dk.dk
Homepage: www.wpe-dk.com