Showing posts with label Indonesia. Show all posts
Showing posts with label Indonesia. Show all posts

UHPC Earthquake security systems for existing buildings

Ultra High Performance Concrete (UHPC) is a high-strength, ductile material formulated by combining cement, microsilica, fine sand, water, and steel or ceramic fibers and mesh.
The UHPC concrete provides compressive strengths up to 250 MPa / 36200 psi and flexural strengths up to 30 MPa / 4300 psi.
The ductile behavior of UHPC is, with the capacity to deform and support flexural and tensile loads, even after initial cracking. 



 
Façade elements made by UHPC, protect people and vehicles in an earthquake against fragments litter in building structures made 
of concrete and brickwork.

Concrete ceilings are rigid and brittle structures that at the an earthquake stress the concrete structure can break partially. The fracture is not 
a slow phenomenon under load - the fracture occurs when overloading on suddenly.
The result is that to loosen individual fragments of the ceiling could (fragments litter) fall on machines or people. Are the fragments large enough, it can lead to complete component failure.

UHPC prefabricated ceiling structures prevent like a prestressed network the fragments become loose during the quake from the ceiling.

People and machines are protected by such a suspended ceiling construction.

Emergency exits can win with such additional structure several times of safety.

Just as concrete ceilings and concrete columns are complex constructions an essential safety feature of a quake. The concrete columns must take tremendous 
flexural and compressive forces. A chipping of the concrete structure of the inner steel reinforcement would have a very rapid component failure result.
Concrete columns can by a jacket (by shedding) of UHPC gain much stability and carrying capacity. A chipping of the concrete structure at a load by an earthquake of small and medium thickness is almost impossible with the appropriate cover. 

Advantages of UHPC
  • Extreme high compressive strength
  • High flexural strength
  • Extreme low porosity
  • Extreme good flowability
  • Fast increase of compressive strength (min. 70% after 48 hours)
  • High wear and impact resistance
  • Absolute frost and thaw resistance
  • Impermeable to fluids but still vapour permeable
  • Anticorrosive features
  • Good bonding to sub-bases, aggregates and reinforcement
  • High temperature resistant
  • Jointless lining
  • Usable as mortar, grout and spray
  • High ductility in combination with fibres or nano fibres
  • Usable with standard concrete tools

UHPC - His entry before and after a quake

UHPC materials can be used as additional safety in new concrete structures such as buildings, bridges, etc. For existing buildings and very old buildings, targeted activities involving the use of UHPC materials can significantly increase the safety of people and buildings. With UHPC materials, damaged buildings can be repaired to restore their old stability or improve their stability against earthquake loads by improving their building structure.

Possible applications for high quality UHPC materials

Repairing
To make existing structures safer for future earthquake

Retrofitting
To upgrade the earthquake resistance up to a level of  the present day codes by appropriate techniques

Strengthening
To upgrade the seismic resistance of the a damage building

Rehabilitation
Reconstruction or renewal of a damaged building to provide the same level of function, which the building had prior to the damage

Restauration
Rehabilitation of buildings in a certain area

Remoulding
Reconstruction or renewal of any part of an existing building owning to change of usage or occupancy

Example of retrofitting techniques
  • Minor cracks
    Repair by injecting UHPC
  • Buckled longitudinal reinforcement, broken ties and crushed concrete
    Replacement of new reinforcement welded with existing bars and new additionally closed ties were placed, UHPC concrete with low shrinkage properties installed.
  • Severely damaged columns adjacent to added walls
    Retrofitting with encasing in UHPC concrete with appropriate longitudinal and transfers reinforcement.
  • Other columns
    Retrofitted with wire mesh and cover with 50 mm UHPC concrete by spraying or casting
  • Existing masonry walls
    Are retrofitting by using wire mesh and 30 mm of UHPC® mortar or spray

Like concrete cover constructions, concrete columns are also essential safety aspect in a quake. The supports have enormous bending and compression forces to take. 
A spalling of the concrete structure from the internal steel reinforcement would have a very fast component failure result.
As with the concrete floors, columns can be replaced by a grouting UHPC gain significantly in stability and carrying capacity. A flaking of the concrete construction is under load from a quake of small and medium strength with 
appropriate sheath almost impossible.

In a quake will be in the brickwork of a building very quickly showing cracks in the in the worst case, individual stones break loose (Rubble throw) or a whole bandage, which too can lead to a component failure. The cracks in the masonry after a quake are permanent and can become one uninhabitability and demolition of 
the building to lead.
Damaged masonry will be repaired differently depending on the degree of damage.
Fine cracks can be filled with UHPC injection methods. Loose masonry, bad mortar can be increased by new masonry and UHPC mortar substantially in the strength and bending tensile strength. Masonry can also be improved in its entire surface with a fibre reinforced UHPC layer in combination with steel or fibreglass reinforcement substantially in its static structure. Especially glass fibre or carbon fibre reinforced 
UHPC show a high ductility.

In any case, should structural modifications such as those described here, be agreed in consultation with 
an architect, stress analysts and the competent local planning authority.


UHPC concrete in the petroleum production and processing industry

In the oil producing and processing industry,
UHPC Ultra high Performance concrete can
and will be used in a variety of applications
such as securing material, repair material,
construction material, wear protection and
corrosion protection used.

For the use of offshore platforms UHPC is an
ideal construction, repair and corrosion material.
UHPC can be processed without problems in humid
environments. UHPC is water-permeable even in
low layer thicknesses. UHPC is absolutely saltwater
resistant and can be processed underwater. UHPC in
its high temperature version can be used up to
1000°C/1832°F continuous temperature. UHPC
retains much of its strength at this temperature,
whereas steel has long lost its strength. UHPC is
extremely resistant to rapid temperature fluctuations.

In crude oil processing UHPC can be used as
corrosion protection, wear protection, safety
construction or as construction material.

UHPC concrete are also particularly suitable for the
fracking industry and as oilwell cement.

In the oil refineries and oil ports, UHPC is a perfect
material for all security components. Here, security
can also be interpreted as security against terrorist
attacks. UHPC is extremely corrosion-resistant and
liquid-tight from a wall thickness of 10 mm. Pipes
can be protected against wear and corrosion from
the inside. Important and sensitive constructions
can be permanently protected against temperature
and wear with UHPC. There are already plans to
construct complete crude oil tanks from UHPC. In
case of fires, they would maintain their strength even
at extreme temperatures. Security-related buildings
and production facilities can be protected against a
terrorist attack. Port facilities and loading and
unloading jetty facilities can be permanently
protected against seawater corrosion.



New construction and repair of Jetties with UHPC concrete

For modern jetty constructions, UHPC concrete
offers many advantages compared to standard
concrete, steel or wooden constructions.
- All jetty elements can be prefabricated or cast
   on site in a short time.
- UHPC concrete has no or only extremely low
   pore volume and is thus absolutely seawater
   and corrosion resistant.
- UHPC concrete hardens under water. It can
   therefore be processed in and under water.
- UHPC concrete has a standard strength
   between 120 MPa/17400 psi and
   250 MPa/36250 psi.
- UHPC prefabricated elements can be made
   considerably thinner due to the very high
   strength and the absence of porosity, and
   thus with significantly less weight.

Due to the properties of UHPC concrete listed
above, such constructions do not require further
inspection. It can be assumed that the service
life is almost 100+ years.

Since UHPC concrete has very good wear and
impact resistance, harsh harbor conditions and
extreme environmental conditions such as ice
are no problem.

Installation
UHPC concrete can be produced by us as mortar,
casting compound or shotcrete mass. For processing,
a compulsory or pan pot mixer is needed. Our
shotcrete and castable UHPC material can also be
pumped over longer distances.

Repairs of damaged standard concrete, steel or 
wooden constructions
Jetties can be severely damaged by impact, corrosion,
rotting or faulty concrete processing. The repair
with UHPC concrete is simple and requires little
effort.
For preparation, remove any loose particles and
buildup such as clams, algae and the like.
A mold should be installed around the columns.
The water does not have to be removed from the mold.
The UHPC concrete is poured directly in the water.
The concrete displaces the seawater from the mold.
The mold can be removed after less than 48 hours.
This type of repair has been used for more than 20
years as a standard repair method on offshore platforms.


Corrosion problems at offshore wind turbines solved with UHPC concrete


You have the solution already built in your
wind turbine system UHPC Ultra High
Performance concrete material was already
used in the first wind turbines and has been
stable to date and not replaced.

UHPC is absolut seawater resistant and you
can cast it into the seawater if necessary. No
elaborate preparation is necessary and the
corrosion protection will last for at least 100
years without having to be repaired.
Most system suppliers for offshore wind
turbines have known this for a long time.
 
The UHPC material would have to be
modified a bit, that's all.
We modifed it and it work together
with a simple installation system perfect.

The assembly costs and the operating costs
for a complex anode/cathode system is
several times higher and this electrical
system must be monitored regularly.

Well, there are several ways to tackle the
corrosion problem
- You let it rust because the system is already
   so old
- You can apply an extremely complex anti-
   corrosion paint system. Very expensive and
   the durability is extremely limited.
- UHPC is applied to the steel structure as a
   protective layer.
   A relatively simple and safe installation with
   a durability of more than 50 years
- UHPC is used as a constructive measure to
   improve or stabilize the load-bearing capacity
   of the foundation
- UHPC is brought up as a constructive measure
   in connection with the design of an artificial
   reef around the foundation in order to improve
   the situation of the marine fauna.